Search results
Results from the WOW.Com Content Network
Glucose isomerase (also known as xylose isomerase) catalyzes the conversion of D-xylose and D-glucose to D-xylulose and D-fructose. Like most sugar isomerases, glucose isomerase catalyzes the interconversion of aldoses and ketoses. [24] The conversion of glucose to fructose is a key component of high-fructose corn syrup production.
Glucose-6-phosphate isomerase (GPI), alternatively known as phosphoglucose isomerase/phosphoglucoisomerase (PGI) or phosphohexose isomerase (PHI), is an enzyme ( EC 5.3.1.9) that in humans is encoded by the GPI gene on chromosome 19. [4] This gene encodes a member of the glucose phosphate isomerase protein family.
In enzymology, a xylose isomerase (EC 5.3.1.5) is an enzyme that catalyzes the interconversion of D-xylose and D-xylulose. This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ketoses. The isomerase has now been observed in nearly a hundred species of bacteria. [2]
Ribose-5-phosphate isomerase (Rpi) encoded by the RPIA gene is an enzyme (EC 5.3.1.6) that catalyzes the conversion between ribose-5-phosphate (R5P) and ribulose-5-phosphate (Ru5P). It is a member of a larger class of isomerases which catalyze the interconversion of chemical isomers (in this case structural isomers of pentose ).
In this pathway the enzyme xylose isomerase converts D-xylose directly into D-xylulose. D-xylulose is then phosphorylated to D-xylulose-5-phosphate as in the oxido-reductase pathway. At equilibrium, the isomerase reaction results in a mixture of 83% D-xylose and 17% D-xylulose because the conversion of xylose to xylulose is energetically ...
Triose phosphate isomerase is a highly efficient enzyme, performing the reaction billions of times faster than it would occur naturally in solution. The reaction is so efficient that it is said to be catalytically perfect : It is limited only by the rate the substrate can diffuse into and out of the enzyme's active site.
Ribose-5-phosphate isomerase deficiency (RPID) is a rare human disorder caused by mutations in ribose-5-phosphate isomerase, an enzyme of the pentose phosphate pathway.With only four known cases – all diagnosed between 1984 and 2019 – RPI deficiency is the second rarest disease, with Fields condition being the rarest, affecting two known individuals, Catherine and Kirstie Fields.
Protein disulfide-isomerase has two catalytic thioredoxin-like domains (active sites), each containing the canonical CGHC motif, and two non catalytic domains. [4] [5] [6] This structure is similar to the structure of enzymes responsible for oxidative folding in the intermembrane space of the mitochondria; an example of this is mitochondrial IMS import and assembly (Mia40), which has 2 ...