Search results
Results from the WOW.Com Content Network
The standard deviation of a probability distribution is the same as that of a random variable having that distribution. Not all random variables have a standard deviation. If the distribution has fat tails going out to infinity, the standard deviation might not exist, because the integral might not converge.
Deviation (statistics) In mathematics and statistics, deviation serves as a measure to quantify the disparity between an observed value of a variable and another designated value, frequently the mean of that variable. Deviations with respect to the sample mean and the population mean (or "true value") are called errors and residuals, respectively.
Unbiased estimation of standard deviation. In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the ...
In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered ...
The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when and , and it is described by this probability density function (or density): The variable has a mean of 0 and a variance and standard deviation of 1.
The characteristic function. of the sum of two independent random variables X and Y is just the product of the two separate characteristic functions: of X and Y. The characteristic function of the normal distribution with expected value μ and variance σ 2 is. {\displaystyle \varphi (t)=\exp \left (it\mu - {\sigma ^ {2}t^ {2} \over 2}\right).} So.
Chebyshev's inequality. In probability theory, Chebyshev's inequality (also called the Bienaymé–Chebyshev inequality) provides an upper bound on the probability of deviation of a random variable (with finite variance) from its mean. More specifically, the probability that a random variable deviates from its mean by more than is at most ...