enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph enumeration - Wikipedia

    en.wikipedia.org/wiki/Graph_enumeration

    The complete list of all free trees on 2, 3, and 4 labeled vertices: = tree with 2 vertices, = trees with 3 vertices, and = trees with 4 vertices.. In combinatorics, an area of mathematics, graph enumeration describes a class of combinatorial enumeration problems in which one must count undirected or directed graphs of certain types, typically as a function of the number of vertices of the ...

  3. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    A graph is called k-vertex-connected or k-connected if its vertex connectivity is k or greater. More precisely, any graph G (complete or not) is said to be k -vertex-connected if it contains at least k + 1 vertices, but does not contain a set of k − 1 vertices whose removal disconnects the graph; and κ ( G ) is defined as the largest k such ...

  4. SPQR tree - Wikipedia

    en.wikipedia.org/wiki/SPQR_tree

    If a planar graph is 3-connected, it has a unique planar embedding up to the choice of which face is the outer face and of orientation of the embedding: the faces of the embedding are exactly the nonseparating cycles of the graph. However, for a planar graph (with labeled vertices and edges) that is 2-connected but not 3-connected, there may be ...

  5. Lovász–Woodall conjecture - Wikipedia

    en.wikipedia.org/wiki/Lovász–Woodall_conjecture

    [3] Another corollary of Menger's theorem is that in 2-connected graphs, any two edges lie on a common cycle. The proof, however, does not generalize to the corresponding statement for k edges in a k-connected graph; rather, Menger's theorem can be used to show that in a k-connected graph, given any 2 edges and k-2 vertices, there is a cycle ...

  6. Barnette's conjecture - Wikipedia

    en.wikipedia.org/wiki/Barnette's_conjecture

    A graph is bipartite if its vertices can be colored with two different colors such that each edge has one endpoint of each color. A graph is cubic (or 3-regular) if each vertex is the endpoint of exactly three edges. Finally, a graph is Hamiltonian if there exists a cycle that passes through each of its vertices exactly once. Barnette's ...

  7. Tait's conjecture - Wikipedia

    en.wikipedia.org/wiki/Tait's_conjecture

    The "compulsory" edges of the fragments, that must be part of any Hamiltonian path through the fragment, are connected at the central vertex; because any cycle can use only two of these three edges, there can be no Hamiltonian cycle. The resulting Tutte graph is 3-connected and planar, so by Steinitz' theorem it is the graph of a polyhedron. In ...

  8. Algebraic connectivity - Wikipedia

    en.wikipedia.org/wiki/Algebraic_connectivity

    An example graph, with 6 vertices, diameter 3, connectivity 1, and algebraic connectivity 0.722 The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1]

  9. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    It is possible to find the maximum clique, or the clique number, of an arbitrary n-vertex graph in time O (3 n/3) = O (1.4422 n) by using one of the algorithms described above to list all maximal cliques in the graph and returning the largest one. However, for this variant of the clique problem better worst-case time bounds are possible.