Search results
Results from the WOW.Com Content Network
Here is a brief overview of what Xcas is able to do: [9] [10] Xcas has the ability of a scientific calculator that provides show input and writes pretty print; Xcas also works as a spreadsheet; [11]
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1]
In both the global and local cases, the concept of a strict extremum can be defined. For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗, we have f(x ∗) > f(x), and x ∗ is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x ∗ with x ≠ x ∗, we ...
[e] The extremum [] is called a local maximum if everywhere in an arbitrarily small neighborhood of , and a local minimum if there. For a function space of continuous functions, extrema of corresponding functionals are called strong extrema or weak extrema , depending on whether the first derivatives of the continuous functions are respectively ...
Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.
Throughout, it is assumed that is a real or complex vector space.. For any ,,, say that lies between [2] and if and there exists a < < such that = + ().. If is a subset of and , then is called an extreme point [2] of if it does not lie between any two distinct points of .
The stationary points are the red circles. In this graph, they are all relative maxima or relative minima. The blue squares are inflection points.. In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero.
A standard example [citation needed] is finding the real-valued function y(x) on the interval [a, b], such that y(a) = c and y(b) = d, for which the path length along the curve traced by y is as short as possible.