Search results
Results from the WOW.Com Content Network
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology , geometric topology , and algebraic topology .
In mathematics, and specifically in topology, a CW complex (also cellular complex or cell complex) is a topological space that is built by gluing together topological balls (so-called cells) of different dimensions in specific ways. It generalizes both manifolds and simplicial complexes and has particular significance for algebraic topology. [1]
In mathematics, a topos (US: / ˈ t ɒ p ɒ s /, UK: / ˈ t oʊ p oʊ s, ˈ t oʊ p ɒ s /; plural topoi / ˈ t ɒ p ɔɪ / or / ˈ t oʊ p ɔɪ /, or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally, on a site).
In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. [1] The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of continuously shrinking a space into a ...
In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a function whose domain is a directed set. The codomain of this function is usually some topological space .
Other related books on the mathematics of 3-manifolds include 3-manifolds by John Hempel (1976), Knots, links, braids and 3-manifolds by Victor V. Prasolov and Alexei B. Sosinskiĭ (1997), Algorithmic topology and classification of 3-manifolds by Sergey V. Matveev (2nd ed., 2007), and a collection of unpublished lecture notes on 3-manifolds by Allen Hatcher.
Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.