Search results
Results from the WOW.Com Content Network
A difference of 1.0 in magnitude corresponds to the brightness ratio of , or about 2.512. For example, a magnitude 2.0 star is 2.512 times as bright as a magnitude 3.0 star, 6.31 times as magnitude 4.0, and 100 times magnitude 7.0.
A more complex definition of absolute magnitude is used for planets and small Solar System bodies, based on its brightness at one astronomical unit from the observer and the Sun. The Sun has an apparent magnitude of −27 and Sirius, the brightest visible star in the night sky, −1.46. Venus at its brightest is -5.
Factor ()Multiple Value Item 0 0 lux 0 lux Absolute darkness 10 −4: 100 microlux 100 microlux: Starlight overcast moonless night sky [1]: 140 microlux: Venus at brightest [1]: 200 microlux
The apparent magnitude is the observed visible brightness from Earth which depends on the distance of the object. The absolute magnitude is the apparent magnitude at a distance of 10 pc (3.1 × 10 17 m), therefore the bolometric absolute magnitude is a logarithmic measure of the bolometric luminosity.
In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the human eye. The SI unit of luminous intensity is the candela (cd), an SI base unit.
Because the orbit of Mars is considerably eccentric its brightness at opposition can range from magnitude −3.0 to −1.4. [14] The minimum brightness is about magnitude +1.6 [14] when Mars is on the opposite site of the Sun from the Earth. Rotational variations can elevate or suppress the brightness of Mars by 5% and global dust storms can ...
Intel (INTC) at year-end 2023 had $43.27 billion in current assets and $28.05 billion in current liabilities, for a high 1.54 current ratio. What is a good current ratio? The ideal current ratio ...
The more luminous an object, the smaller the numerical value of its absolute magnitude. A difference of 5 magnitudes between the absolute magnitudes of two objects corresponds to a ratio of 100 in their luminosities, and a difference of n magnitudes in absolute magnitude corresponds to a luminosity ratio of 100 n/5.