Search results
Results from the WOW.Com Content Network
Bacteria also live in symbiotic and parasitic relationships with plants and animals. Once regarded as plants constituting the class Schizomycetes , bacteria are now classified as prokaryotes . Unlike cells of animals and other eukaryotes , bacterial cells do not contain a nucleus and rarely harbour membrane-bound organelles .
Bacteria also live in symbiotic and parasitic relationships with plants and animals. Once regarded as plants constituting the class Schizomycetes , bacteria are now classified as prokaryotes . Unlike cells of animals and other eukaryotes , bacterial cells do not contain a nucleus and rarely harbour membrane-bound organelles .
[40] [41] For example, tropical corals harbor diverse bacteria in their surface mucus layer that produce quorum-sensing inhibitors and other antibacterial compounds as a defense against colonization and infection by potential microbial pathogens. [3]
Oceanic plants and animals easily capture what they need for their daily life, which make them 'lazy' and 'slow'. Sea water removes waste from animals and plants. Sea water is cleaner than we can imagine. Because of the huge volume of ocean, the waste produced by oceanic organisms and even human activities can hardly get the sea water polluted.
Marine protists are defined by their habitat as protists that live in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. Life originated as marine single-celled prokaryotes (bacteria and archaea) and later evolved into more complex eukaryotes. Eukaryotes are the more developed life forms ...
Marine plants can be found in intertidal zones and shallow waters, such as seagrasses like eelgrass and turtle grass, Thalassia. These plants have adapted to the high salinity of the ocean environment. Light is only able to penetrate the top 200 metres (660 ft) so this is the only part of the sea where plants can grow. [77]
Dissolved organic matter (DOM) is available in many forms in the ocean, and is responsible for supporting the growth of bacteria and microorganisms in the ocean. The two main sources of this dissolved organic matter are; decomposition of higher trophic level organisms like plants and fish, and secondly DOM in runoffs that pass through soil with ...
This wide range of latitude along with the bacteria's ability to survive up to depths of 100 to 150 metres, i.e. the average depth of the mixing layer of the surface ocean, allows it to grow to enormous numbers, up to 3 × 10 27 individuals worldwide. [15]