Search results
Results from the WOW.Com Content Network
Propagation of a wave packet demonstrating a phase velocity greater than the group velocity. This shows a wave with the group velocity and phase velocity going in different directions. The group velocity is positive, while the phase velocity is negative. [1] The phase velocity of a wave is the rate at which the wave propagates in any medium.
In the following equations and graphs, we adopt the following conventions. For s polarization, the reflection coefficient r is defined as the ratio of the reflected wave's complex electric field amplitude to that of the incident wave, whereas for p polarization r is the ratio of the waves complex magnetic field amplitudes (or equivalently, the ...
Figure 9 is the phase plot. Using the value of f 0 dB = 1 kHz found above from the magnitude plot of Figure 8, the open-loop phase at f 0 dB is −135°, which is a phase margin of 45° above −180°. Using Figure 9, for a phase of −180° the value of f 180 = 3.332 kHz (the same result as found earlier, of course [note 3]).
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
If the shift in is expressed as a fraction of the period, and then scaled to an angle spanning a whole turn, one gets the phase shift, phase offset, or phase difference of relative to . If F {\displaystyle F} is a "canonical" function for a class of signals, like sin ( t ) {\displaystyle \sin(t)} is for all sinusoidal signals, then φ ...
In signal processing, linear phase is a property of a filter where the phase response of the filter is a linear function of frequency. The result is that all frequency components of the input signal are shifted in time (usually delayed) by the same constant amount (the slope of the linear function), which is referred to as the group delay .
A geometrical arrangement used in deriving the Kirchhoff's diffraction formula. The area designated by A 1 is the aperture (opening), the areas marked by A 2 are opaque areas, and A 3 is the hemisphere as a part of the closed integral surface (consisted of the areas A 1, A 2, and A 3) for the Kirchhoff's integral theorem.
A wave on a string experiences a 180° phase change when it reflects from a point where the string is fixed. [2] [3] Reflections from the free end of a string exhibit no phase change. The phase change when reflecting from a fixed point contributes to the formation of standing waves on strings, which produce the sound from stringed instruments.