Search results
Results from the WOW.Com Content Network
m(NaCl) = 2 mol/L × 0.1 L × 58 g/mol = 11.6 g. To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL. The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore ...
The first clear instance of the preparation of hydrochloric acid appears in the writings of Della Porta, (1589 and 1608), Libavius (1597), pseudo-Basil (1604), van Helmont (1646) and Glauber (1648). Less convincing earlier references are found in the Plichto of Rosetti (1540) and in Agricola (1558). As for the first practical method of ...
Small amounts of hydrogen chloride for laboratory use can be generated in an HCl generator by dehydrating hydrochloric acid with either sulfuric acid or anhydrous calcium chloride. Alternatively, HCl can be generated by the reaction of sulfuric acid with sodium chloride: [17] NaCl + H 2 SO 4 → NaHSO 4 + HCl↑. This reaction occurs at room ...
Ammonium chloride is prepared commercially by combining ammonia (NH 3) with either hydrogen chloride (gas) or hydrochloric acid (water solution): [3] NH 3 + HCl → NH 4 Cl. Ammonium chloride occurs naturally in volcanic regions, forming on volcanic rocks near fume-releasing vents . The crystals deposit directly from the gaseous state and tend ...
If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be called a "2 normal" solution. It can also be called a "2 normal" solution. Similarly, for a solution with c (H 3 PO 4 ) = 1 mol/L, the normality is 3 N because phosphoric acid contains 3 acidic H atoms.
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]
Table 1: Preparing a set of glutamine standards example Concentration of glutamine stock solution (g/mL): 7.50 x 10 −3; Solution Glutamine added (mL) Dilute to mark with: Resulting Concentration (g/mL) 1 (blank) 0 Deionized water in 25 mL Volumetric Flask 0 2 1 3.00 x 10 −4: 3 2 6.00 x 10 −4: 4 3 9.00 x 10 −4: 5 4 1.20 x 10 −3
Enthalpy change of solution in water at 25 °C for some selected compounds [2] Compound ΔH o in kJ/mol; hydrochloric acid: −74.84 ammonium nitrate +25.69 ammonia: −30.50 potassium hydroxide: −57.61 caesium hydroxide: −71.55 sodium chloride +3.87 potassium chlorate +41.38 acetic acid: −1.51 sodium hydroxide: −44.50