enow.com Web Search

  1. Ad

    related to: collinear points means in geometry calculator formula booklet free download

Search results

  1. Results from the WOW.Com Content Network
  2. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    In any geometry, the set of points on a line are said to be collinear. In Euclidean geometry this relation is intuitively visualized by points lying in a row on a "straight line". However, in most geometries (including Euclidean) a line is typically a primitive (undefined) object type , so such visualizations will not necessarily be appropriate.

  3. Cross-ratio - Wikipedia

    en.wikipedia.org/wiki/Cross-ratio

    Being on a circle means the four points are the image of four real points under a Möbius transformation, and hence the cross ratio is a real number. The Poincaré half-plane model and Poincaré disk model are two models of hyperbolic geometry in the complex projective line .

  4. Collinearity equation - Wikipedia

    en.wikipedia.org/wiki/Collinearity_equation

    Let x, y, and z refer to a coordinate system with the x- and y-axis in the sensor plane. Denote the coordinates of the point P on the object by ,,, the coordinates of the image point of P on the sensor plane by x and y and the coordinates of the projection (optical) centre by ,,.

  5. Pappus's hexagon theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_hexagon_theorem

    Thus (E, H; J, G) = (E, K; D, L), so by Lemma X, the points H, M, and K are collinear. That is, the points of intersection of the pairs of opposite sides of the hexagon ADEGBZ are collinear. Lemmas XV and XVII are that, if the point M is determined as the intersection of HK and BG, then the points A, M, and D are collinear.

  6. Projective harmonic conjugate - Wikipedia

    en.wikipedia.org/wiki/Projective_harmonic_conjugate

    In projective geometry, the harmonic conjugate point of a point on the real projective line with respect to two other points is defined by the following construction: Given three collinear points A, B, C, let L be a point not lying on their join and let any line through C meet LA, LB at M, N respectively.

  7. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    The circumcircle of three collinear points is the line on which the three points lie, often referred to as a circle of infinite radius. Nearly collinear points often lead to numerical instability in computation of the circumcircle. Circumcircles of triangles have an intimate relationship with the Delaunay triangulation of a set of points.

  8. Incidence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(geometry)

    In geometry, an incidence relation is a heterogeneous relation that captures the idea being expressed when phrases such as "a point lies on a line" or "a line is contained in a plane" are used. The most basic incidence relation is that between a point, P , and a line, l , sometimes denoted P I l .

  9. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A weak version of the theorem states that

  1. Ad

    related to: collinear points means in geometry calculator formula booklet free download