enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Evaluation measures (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Evaluation_measures...

    Precision takes all retrieved documents into account. It can also be evaluated considering only the topmost results returned by the system using Precision@k. Note that the meaning and usage of "precision" in the field of information retrieval differs from the definition of accuracy and precision within other branches of science and statistics.

  3. Accuracy and precision - Wikipedia

    en.wikipedia.org/wiki/Accuracy_and_precision

    Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10]

  4. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  5. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    If not known and calculated from data, an accuracy comparison test could be made using "Two-proportion z-test, pooled for Ho: p1 = p2". Not used very much is the complementary statistic, the fraction incorrect (FiC): FC + FiC = 1, or (FP + FN)/(TP + TN + FP + FN) – this is the sum of the antidiagonal , divided by the total population.

  6. Test method - Wikipedia

    en.wikipedia.org/wiki/Test_method

    accuracy and precision; demonstration of accuracy may require the creation of a reference value if none is yet available; repeatability and reproducibility, sometimes in the form of a Gauge R&R. range, or a continuum scale over which the test method would be considered accurate (e.g., 10 N to 100 N force test)

  7. Accuracy paradox - Wikipedia

    en.wikipedia.org/wiki/Accuracy_paradox

    Even though the accuracy is ⁠ 10 + 999000 / 1000000 ⁠ ≈ 99.9%, 990 out of the 1000 positive predictions are incorrect. The precision of ⁠ 10 / 10 + 990 ⁠ = 1% reveals its poor performance. As the classes are so unbalanced, a better metric is the F1 score = ⁠ 2 × 0.01 × 1 / 0.01 + 1 ⁠ ≈ 2% (the recall being ⁠ 10 + 0 / 10 ...

  8. Sensitivity and specificity - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_and_specificity

    In medical diagnosis, test sensitivity is the ability of a test to correctly identify those with the disease (true positive rate), whereas test specificity is the ability of the test to correctly identify those without the disease (true negative rate). If 100 patients known to have a disease were tested, and 43 test positive, then the test has ...

  9. False precision - Wikipedia

    en.wikipedia.org/wiki/False_precision

    False precision (also called overprecision, fake precision, misplaced precision, and spurious precision) occurs when numerical data are presented in a manner that implies better precision than is justified; since precision is a limit to accuracy (in the ISO definition of accuracy), this often leads to overconfidence in the accuracy, named precision bias.