Search results
Results from the WOW.Com Content Network
one degenerate polyhedron, Skilling's figure with overlapping edges. It was proven in Sopov (1970) that there are only 75 uniform polyhedra other than the infinite families of prisms and antiprisms. John Skilling discovered an overlooked degenerate example, by relaxing the condition that only two faces may meet at an edge.
(The icosidodecahedron is the equatorial cross-section of the 600-cell, and the decagon is the equatorial cross-section of the icosidodecahedron.) These radially golden polytopes can be constructed, with their radii, from golden triangles which meet at the center, each contributing two radii and an edge.
Polyhedra with this property can also be called "edge-transitive", but they should be distinguished from edge-transitive graphs, where the symmetries are combinatorial rather than geometric. Regular polyhedra are isohedral (face-transitive), isogonal (vertex-transitive), and isotoxal (edge-transitive).
A geodesic polyhedron is a convex polyhedron made from triangles. They usually have icosahedral symmetry, such that they have 6 triangles at a vertex, except 12 vertices which have 5 triangles. They are the dual of corresponding Goldberg polyhedra, of which all but the smallest one (which is a regular dodecahedron) have mostly hexagonal faces.
Other than rhombic triacontahedron, it is one of two Catalan solids that each have the property that their isometry groups are edge-transitive; the other convex polyhedron classes being the five Platonic solids and the other two Archimedean solids: its dual polyhedron and icosidodecahedron. Denoting by a the edge length of a rhombic dodecahedron,
Regular polyhedron. Platonic solid: Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron; Regular spherical polyhedron. Dihedron, Hosohedron; Kepler–Poinsot polyhedron (Regular star polyhedra) Small stellated dodecahedron, Great stellated dodecahedron, Great icosahedron, Great dodecahedron; Abstract regular polyhedra (Projective polyhedron)
The convex polyhedron is well-defined with several equivalent standard definitions, one of which is a polyhedron that is a convex set, or the polyhedral surface that bounds it. Every convex polyhedron is the convex hull of its vertices, and the convex hull of a finite set of points is a polyhedron.
Each polyhedron lies in Euclidean 4-dimensional space as a parallel cross section through the 600-cell (a hyperplane). In the curved 3-dimensional space of the 600-cell's boundary surface envelope, the polyhedron surrounds the vertex V the way it surrounds its own center. But its own center is in the interior of the 600-cell, not on its surface.