Search results
Results from the WOW.Com Content Network
This decimal format can also represent any binary fraction a/2 m, such as 1/8 (0.125) or 17/32 (0.53125). More generally, a rational number a/b, with a and b relatively prime and b positive, can be exactly represented in binary fixed point only if b is a power of 2; and in decimal fixed point only if b has no prime factors other than 2 and/or 5.
Most decimal fractions (or most fractions in general) cannot be represented exactly as a fraction with a denominator that is a power of two. For example, the simple decimal fraction 0.3 (3 ⁄ 10) might be represented as 5404319552844595 ⁄ 18014398509481984 (0.299999999999999988897769…). This inexactness causes many problems that are ...
The Q notation is a way to specify the parameters of a binary fixed point number format. For example, in Q notation, the number format denoted by Q8.8 means that the fixed point numbers in this format have 8 bits for the integer part and 8 bits for the fraction part. A number of other notations have been used for the same purpose.
The entire fraction may be expressed as a single composition, in which case it is hyphenated, or as a number of fractions with a numerator of one, in which case they are not. (For example, two-fifths is the fraction 2 / 5 and two fifths is the same fraction understood as 2 instances of 1 / 5 .) Fractions should always be ...
It follows that a number is a decimal fraction if and only if it has a finite decimal representation. Expressed as fully reduced fractions, the decimal numbers are those whose denominator is a product of a power of 2 and a power of 5. Thus the smallest denominators of decimal numbers are
By using a dot to divide the digits into two groups, one can also write fractions in the positional system. For example, the base 2 numeral 10.11 denotes 1×2 1 + 0×2 0 + 1×2 −1 + 1×2 −2 = 2.75. In general, numbers in the base b system are of the form:
By {{Convert}} default, the conversion result will be rounded either to precision comparable to that of the input value (the number of digits after the decimal point—or the negative of the number of non-significant zeroes before the point—is increased by one if the conversion is a multiplication by a number between 0.02 and 0.2, remains the ...
The decimal expansion of non-negative real number x will end in zeros (or in nines) if, and only if, x is a rational number whose denominator is of the form 2 n 5 m, where m and n are non-negative integers. Proof: