Search results
Results from the WOW.Com Content Network
Histogram equalization is a method in image processing of contrast adjustment using the image's histogram. Histograms of an image before and after equalization.
Adaptive histogram equalization (AHE) is a computer image processing technique used to improve contrast in images. It differs from ordinary histogram equalization in the respect that the adaptive method computes several histograms, each corresponding to a distinct section of the image, and uses them to redistribute the lightness values of the image.
An example of histogram matching In image processing , histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [ 1 ] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed .
This histogram shows the number of cases per unit interval as the height of each block, so that the area of each block is equal to the number of people in the survey who fall into its category. The area under the curve represents the total number of cases (124 million). This type of histogram shows absolute numbers, with Q in thousands.
An image histogram is a type of histogram that acts as a graphical representation of the tonal distribution in a digital image. [1] It plots the number of pixels for each tonal value. By looking at the histogram for a specific image a viewer will be able to judge the entire tonal distribution at a glance.
In image processing, the balanced histogram thresholding method (BHT), [1] is a very simple method used for automatic image thresholding.Like Otsu's Method [2] and the Iterative Selection Thresholding Method, [3] this is a histogram based thresholding method.
The histogram of oriented gradients (HOG) is a feature descriptor used in computer vision and image processing for the purpose of object detection.The technique counts occurrences of gradient orientation in localized portions of an image.
An orientation histogram with 36 bins is formed, with each bin covering 10 degrees. Each sample in the neighboring window added to a histogram bin is weighted by its gradient magnitude and by a Gaussian-weighted circular window with a that is 1.5 times that of the scale of the keypoint. The peaks in this histogram correspond to dominant ...