Search results
Results from the WOW.Com Content Network
In mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is The general form of a quartic equation is Graph of a polynomial function of degree 4, with its 4 roots and 3 critical points .
In optics, Alhazen's problem is "Given a light source and a spherical mirror, find the point on the mirror where the light will be reflected to the eye of an observer." This leads to a quartic equation. [7] [8] [9] Finding the distance of closest approach of two ellipses involves solving a quartic equation.
The cruciform curve, or cross curve is a quartic plane curve given by the equation = where a and b are two parameters determining the shape of the curve. The cruciform curve is related by a standard quadratic transformation, x ↦ 1/x, y ↦ 1/y to the ellipse a 2 x 2 + b 2 y 2 = 1, and is therefore a rational plane algebraic curve of genus zero.
In mathematics, especially in algebraic geometry, a quartic surface is a surface defined by an equation of degree 4. More specifically there are two closely related types of quartic surface: affine and projective. An affine quartic surface is the solution set of an equation of the form (,,) =
The values of trigonometric functions of angles related to / satisfy cubic equations. Given the cosine (or other trigonometric function) of an arbitrary angle, the cosine of one-third of that angle is one of the roots of a cubic. The solution of the general quartic equation relies on the solution of its resolvent cubic.
In mathematics, the term quartic describes something that pertains to the "fourth order", such as the function . It may refer to one of the following: Quartic function, a polynomial function of degree 4; Quartic equation, a polynomial equation of degree 4; Quartic curve, an algebraic curve of degree 4
Given a circle C through a point O, and line L tangent to the circle at point O: for each point Q on C, define the point P such that PQ is parallel to the tangent line L, and PQ = OQ. The collection of points P forms the bifolium. [1] In polar coordinates, the bifolium's equation is
An explicit quartic with twenty-eight real bitangents was first given by Plücker [1] As Plücker showed, the number of real bitangents of any quartic must be 28, 16, or a number less than 9. Another quartic with 28 real bitangents can be formed by the locus of centers of ellipses with fixed axis lengths, tangent to two non-parallel lines. [2]