enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    Since the Diophantus identity implies that the product of two integers each of which can be written as the sum of two squares is itself expressible as the sum of two squares, by applying Fermat's theorem to the prime factorization of any positive integer n, we see that if all the prime factors of n congruent to 3 modulo 4 occur to an even ...

  3. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    Then, by strong induction, assume this is true for all numbers greater than 1 and less than n. If n is prime, there is nothing more to prove. Otherwise, there are integers a and b, where n = a b, and 1 < a ≤ b < n. By the induction hypothesis, a = p 1 p 2 ⋅⋅⋅ p j and b = q 1 q 2 ⋅⋅⋅ q k are products of primes.

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient.

  5. Pollard's p − 1 algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1...

    Assume that p − 1, where p is the smallest prime factor of n, can be modelled as a random number of size less than √ n. By the Dickman function , the probability that the largest factor of such a number is less than ( p − 1) 1/ε is roughly ε − ε ; so there is a probability of about 3 −3 = 1/27 that a B value of n 1/6 will yield a ...

  6. Hensel's lemma - Wikipedia

    en.wikipedia.org/wiki/Hensel's_lemma

    Hensel's original lemma concerns the relation between polynomial factorization over the integers and over the integers modulo a prime number p and its powers. It can be straightforwardly extended to the case where the integers are replaced by any commutative ring, and p is replaced by any maximal ideal (indeed, the maximal ideals of have the form , where p is a prime number).

  7. Cube root - Wikipedia

    en.wikipedia.org/wiki/Cube_root

    The principal cube root is the cube root with the largest real part. In the case of negative real numbers, the largest real part is shared by the two nonreal cube roots, and the principal cube root is the one with positive imaginary part. So, for negative real numbers, the real cube root is not the principal cube root. For positive real numbers ...

  8. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    An n th root of a number x, where n is a positive integer, is any of the n real or complex numbers r whose nth power is x: r n = x . {\displaystyle r^{n}=x.} Every positive real number x has a single positive n th root, called the principal n th root , which is written x n {\displaystyle {\sqrt[{n}]{x}}} .

  9. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's method works best when there is a factor near the square-root of N. If the approximate ratio of two factors ( d / c {\displaystyle d/c} ) is known, then a rational number v / u {\displaystyle v/u} can be picked near that value.