Ads
related to: modular arithmetic identities practice equations and solutions free pdfeducation.com has been visited by 100K+ users in the past month
Education.com is great and resourceful - MrsChettyLife
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Printable Workbooks
kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.
In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo of an odd prime number p: its value at a (nonzero) quadratic residue mod p is 1 and at a non-quadratic residue (non-residue) is −1.
In that sense a modular equation becomes the equation of a modular curve. Such equations first arose in the theory of multiplication of elliptic functions (geometrically, the n 2 -fold covering map from a 2- torus to itself given by the mapping x → n · x on the underlying group) expressed in terms of complex analysis .
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.
In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.
This is widely used in modular arithmetic, because this allows reducing modular exponentiation with large exponents to exponents smaller than n. Euler's theorem is used with n not prime in public-key cryptography , specifically in the RSA cryptosystem , typically in the following way: [ 10 ] if y = x e ( mod n ) , {\displaystyle y=x^{e}{\pmod ...
Ads
related to: modular arithmetic identities practice equations and solutions free pdfeducation.com has been visited by 100K+ users in the past month
Education.com is great and resourceful - MrsChettyLife
kutasoftware.com has been visited by 10K+ users in the past month