enow.com Web Search

  1. Ads

    related to: modular arithmetic identities practice equations and solutions free pdf
  2. education.com has been visited by 100K+ users in the past month

    Education.com is great and resourceful - MrsChettyLife

    • Activities & Crafts

      Stay creative & active with indoor

      & outdoor activities for kids.

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

Search results

  1. Results from the WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.

  3. Legendre symbol - Wikipedia

    en.wikipedia.org/wiki/Legendre_symbol

    In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo of an odd prime number p: its value at a (nonzero) quadratic residue mod p is 1 and at a non-quadratic residue (non-residue) is −1.

  4. Modular equation - Wikipedia

    en.wikipedia.org/wiki/Modular_equation

    In that sense a modular equation becomes the equation of a modular curve. Such equations first arose in the theory of multiplication of elliptic functions (geometrically, the n 2 -fold covering map from a 2- torus to itself given by the mapping x → n · x on the underlying group) expressed in terms of complex analysis .

  5. Residue number system - Wikipedia

    en.wikipedia.org/wiki/Residue_number_system

    A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.

  6. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  7. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    This is widely used in modular arithmetic, because this allows reducing modular exponentiation with large exponents to exponents smaller than n. Euler's theorem is used with n not prime in public-key cryptography , specifically in the RSA cryptosystem , typically in the following way: [ 10 ] if y = x e ( mod n ) , {\displaystyle y=x^{e}{\pmod ...

  1. Ads

    related to: modular arithmetic identities practice equations and solutions free pdf