Search results
Results from the WOW.Com Content Network
The Sun is 1.4 million kilometers (4.643 light-seconds) wide, about 109 times wider than Earth, or four times the Lunar distance, and contains 99.86% of all Solar System mass. The Sun is a G-type main-sequence star that makes up about 99.86% of the mass of the Solar System. [26]
The Sun's path changes with its declination during the year. The intersections of the curves with the horizontal axis show azimuths in degrees from North where the Sun rises and sets. The Sun appears to move northward during the northern spring, crossing the celestial equator on the March equinox.
Ignoring the influence of other Solar System bodies, Earth's orbit, also called Earth's revolution, is an ellipse with the Earth–Sun barycenter as one focus with a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun (relative to the size of the orbit).
The Sun is the Solar System's star and by far its most massive component. Its large mass (332,900 Earth masses), [75] which comprises 99.86% of all the mass in the Solar System, [76] produces temperatures and densities in its core high enough to sustain nuclear fusion of hydrogen into helium. [77]
The Stonyhurst heliographic coordinate system, developed at Stonyhurst College in the 1800s, has its origin (where longitude and latitude are both 0°) at the point where the solar equator intersects the central solar meridian as seen from Earth. Longitude in this system is therefore fixed for observers on Earth. [8] [5]
At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360 degrees and the distant star is overhead again but the Sun is not (1→2 = one stellar day). It is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day).
The heliocentric ecliptic system describes the planets' orbital movement around the Sun, and centers on the barycenter of the Solar System (i.e. very close to the center of the Sun). The system is primarily used for computing the positions of planets and other Solar System bodies, as well as defining their orbital elements.
At the equator, the solar rotation period is 24.47 days. This is called the sidereal rotation period, and should not be confused with the synodic rotation period of 26.24 days, which is the time for a fixed feature on the Sun to rotate to the same apparent position as viewed from Earth (the Earth's orbital rotation is in the same direction as the Sun's rotation).