Search results
Results from the WOW.Com Content Network
With a mean density of 2.061 g/cm 3, [1] Triton is roughly 15-35% water ice by mass; Triton is a differentiated body, with an icy solid crust atop a probable subsurface ocean and a rocky core. As a result, Triton's surface geology is largely driven by the dynamics of water ice and other volatiles such as nitrogen and methane.
Lacking well-defined solid surfaces, they are primarily composed of gases and liquids. Their constituent compounds were solids when they were primarily incorporated into the planets during their formation, either directly in the form of ice or trapped in water ice. Today, very little of the water in Uranus and Neptune remains in the form of ice.
The relative "hot spot" is due to Neptune's axial tilt, which has exposed the south pole to the Sun for the last quarter of Neptune's year, or roughly 40 Earth years. As Neptune slowly moves towards the opposite side of the Sun, the south pole will be darkened and the north pole illuminated, causing the methane release to shift to the north pole.
Neptune, for example, has an atmosphere made of hydrogen and helium (with just a tinge of methane), and it doesn’t really have a surface—or, at least, not what we think of as a surface.
Mercury has a solid silicate crust and mantle overlying a solid metallic outer core layer, followed by a deeper liquid core layer, and then a possible solid inner core making a third layer. [33] The composition of the iron-rich core remains uncertain, but it likely contains nickel, silicon and perhaps sulfur and carbon, plus trace amounts of ...
A giant planet, sometimes referred to as a jovian planet (Jove being another name for the Roman god Jupiter), is a diverse type of planet much larger than Earth. Giant planets are usually primarily composed of low-boiling point materials (), rather than rock or other solid matter, but massive solid planets can also exist.
Triton is differentiated, with a crust of primarily ice atop a probable subsurface ocean of liquid water and a solid rocky-metallic core at its center. Although Triton's orbit is nearly circular with a very low orbital eccentricity of 0.000016 , [ 2 ] Triton's interior may still experience tidal heating through obliquity tides.
The current Venusian atmosphere has only ~200 mg/kg H 2 O(g) in its atmosphere and the pressure and temperature regime makes water unstable on its surface. Nevertheless, assuming that early Venus's H 2 O had a ratio between deuterium (heavy hydrogen, 2H) and hydrogen (1H) similar to Earth's Vienna Standard Mean Ocean Water of 1.6×10 −4, [7] the current D/H ratio in the Venusian atmosphere ...