Search results
Results from the WOW.Com Content Network
Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to ...
Precession is the effect of these forces averaged over a very long period of time, and a time-varying moment of inertia (If an object is asymmetric about its principal axis of rotation, the moment of inertia with respect to each coordinate direction will change with time, while preserving angular momentum), and has a timescale of about 26,000 ...
Precessional movement of Earth. Earth rotates (white arrows) once a day around its rotational axis (red); this axis itself rotates slowly (white circle), completing a rotation in approximately 26,000 years [1] In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational ...
Mathematically, the moment of inertia of a simple pendulum is the ratio of the torque due to gravity about the pivot of a pendulum to its angular acceleration about that pivot point. For a simple pendulum, this is found to be the product of the mass of the particle m {\displaystyle m} with the square of its distance r {\displaystyle r} to the ...
Earth's rotation axis moves with respect to the fixed stars (inertial space); the components of this motion are precession and nutation. It also moves with respect to Earth's crust; this is called polar motion. Precession is a rotation of Earth's rotation axis, caused primarily by external torques from the gravity of the Sun, Moon and other bodies.
Nutation (from Latin nūtātiō 'nodding, swaying') is a rocking, swaying, or nodding motion in the axis of rotation of a largely axially symmetric object, such as a gyroscope, planet, or bullet in flight, or as an intended behaviour of a mechanism. In an appropriate reference frame it can be defined as a change in the second Euler angle.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In the absence of any other forces, a particle orbiting another under the influence of Newtonian gravity follows the same perfect ellipse eternally. The presence of other forces (such as the gravitation of other planets), causes this ellipse to rotate gradually. The rate of this rotation (called orbital precession) can be measured very accurately.