Search results
Results from the WOW.Com Content Network
t. e. In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. [1] The set X is called the domain of the function [2] and the set Y is called the codomain of the function. [3] Functions were originally the idealization of how a varying quantity depends on another quantity.
In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by or , where f is the function. In layman's terms, the domain of a function can generally be thought of as "what x can be". [1] More precisely, given a function , the domain of f is X. In modern mathematical language, the domain is ...
In mathematics, for a function , the image of an input value is the single output value produced by when passed . The preimage of an output value is the set of input values that produce . More generally, evaluating at each element of a given subset of its domain produces a set, called the " image of under (or through) ".
In vector calculus, the Jacobian matrix (/ dʒəˈkoʊbiən /, [1][2][3] / dʒɪ -, jɪ -/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output ...
Graph of the absolute value function, Piecewise functions can be defined using the common functional notation, where the body of the function is an array of functions and associated subdomains. A semicolon or comma may follow the subfunction or subdomain columns. [4] The or is rarely omitted at the start of the right column.
In particular, one can no longer talk about the limit of a function at a point, but rather a limit or the set of limits at a point. A function is continuous at a limit point p of and in its domain if and only if f(p) is the (or, in the general case, a) limit of f(x) as x tends to p. There is another type of limit of a function, namely the ...
Partial function. Function whose actual domain of definition may be smaller than its apparent domain. In mathematics, a partial function f from a set X to a set Y is a function from a subset S of X (possibly the whole X itself) to Y. The subset S, that is, the domain of f viewed as a function, is called the domain of definition or natural ...
In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and. A set function generally aims to measure subsets in some way. Measures are typical examples of "measuring" set ...