enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    v. t. e. Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning. In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations. Tree models where the target variable can take a discrete set of values are called ...

  3. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    A decision tree is a flowchart -like structure in which each internal node represents a "test" on an attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of the test, and each leaf node represents a class label (decision taken after computing all attributes). The paths from root to leaf represent ...

  4. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that works by creating a multitude of decision trees during training. For classification tasks, the output of the random forest is the class selected by most trees. For regression tasks, the output is the average of the ...

  5. AdaBoost - Wikipedia

    en.wikipedia.org/wiki/AdaBoost

    AdaBoost (short for Ada ptive Boost ing) is a statistical classification meta-algorithm formulated by Yoav Freund and Robert Schapire in 1995, who won the 2003 Gödel Prize for their work. It can be used in conjunction with many types of learning algorithm to improve performance. The output of multiple weak learners is combined into a weighted ...

  6. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm. The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier. In 2011, authors of the Weka machine learning software ...

  7. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    Values of attributes are represented by branches. In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset. ID3 is the precursor to the C4.5 algorithm, and is typically used in the machine learning and natural language processing domains.

  8. XGBoost - Wikipedia

    en.wikipedia.org/wiki/XGBoost

    XGBoost. XGBoost[2] (eXtreme Gradient Boosting) is an open-source software library which provides a regularizing gradient boosting framework for C++, Java, Python, [3] R, [4] Julia, [5] Perl, [6] and Scala. It works on Linux, Microsoft Windows, [7] and macOS. [8] From the project description, it aims to provide a "Scalable, Portable and ...

  9. Fast-and-frugal trees - Wikipedia

    en.wikipedia.org/wiki/Fast-and-frugal_trees

    Fast-and-frugal trees. Fast-and-frugal tree or matching heuristic[1] (in the study of decision-making) is a simple graphical structure that categorizes objects by asking one question at a time. These decision trees are used in a range of fields: psychology, artificial intelligence, and management science. Unlike other decision or classification ...