enow.com Web Search

  1. Ad

    related to: problems involving quadrilaterals
  2. education.com has been visited by 100K+ users in the past month

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

    • Guided Lessons

      Learn new concepts step-by-step

      with colorful guided lessons.

Search results

  1. Results from the WOW.Com Content Network
  2. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    A proof given by John Wellesley Russell uses Pasch's axiom to consider cases where a line does or does not meet a triangle. [4] First, the sign of the left-hand side will be negative since either all three of the ratios are negative, the case where the line DEF misses the triangle (see diagram), or one is negative and the other two are positive, the case where DEF crosses two sides of the ...

  3. Bernoulli quadrisection problem - Wikipedia

    en.wikipedia.org/.../Bernoulli_quadrisection_problem

    As Euler proved, in a scalene triangle, it is possible to find a subdivision of this form so that two of the four crossings of the lines and the triangle lie on the middle edge of the triangle, cutting off a triangular area from that edge and leaving the other three areas as quadrilaterals.

  4. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).

  5. Inscribed square problem - Wikipedia

    en.wikipedia.org/wiki/Inscribed_square_problem

    The inscribed square problem, also known as the square peg problem or the Toeplitz' conjecture, is an unsolved question in geometry: Does every plane simple closed curve contain all four vertices of some square? This is true if the curve is convex or piecewise smooth and in other special cases. The problem was proposed by Otto Toeplitz in 1911. [1]

  6. Happy ending problem - Wikipedia

    en.wikipedia.org/wiki/Happy_ending_problem

    In mathematics, the "happy ending problem" (so named by Paul Erdős because it led to the marriage of George Szekeres and Esther Klein [1]) is the following statement: Theorem — any set of five points in the plane in general position [ 2 ] has a subset of four points that form the vertices of a convex quadrilateral .

  7. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8] A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. [9]

  8. Van Aubel's theorem - Wikipedia

    en.wikipedia.org/wiki/Van_Aubel's_theorem

    Follow the quadrilateral vertices in the same sequential direction and construct each square on the left hand side of each side of the given quadrilateral. The segments joining the centers of the squares constructed externally (or internally) to the quadrilateral over two opposite sides have been referred to as Van Aubel segments.

  9. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  1. Ad

    related to: problems involving quadrilaterals