enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    However, the linear congruence 4x ≡ 6 (mod 10) has two solutions, namely, x = 4 and x = 9. The gcd(4, 10) = 2 and 2 does not divide 5, but does divide 6. Since gcd(3, 10) = 1, the linear congruence 3x ≡ 1 (mod 10) will have solutions, that is, modular multiplicative inverses of 3 modulo 10 will exist. In fact, 7 satisfies this congruence (i ...

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In fact, x ≡ b m n −1 m + a n m −1 n (mod mn) where m n −1 is the inverse of m modulo n and n m −1 is the inverse of n modulo m. Lagrange's theorem : If p is prime and f ( x ) = a 0 x d + ... + a d is a polynomial with integer coefficients such that p is not a divisor of a 0 , then the congruence f ( x ) ≡ 0 (mod p ) has at most d ...

  4. Chinese remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Chinese_remainder_theorem

    The set of the solutions of these two first equations is the set of all solutions of the equation x ≡ a 1 , 2 ( mod n 1 n 2 ) . {\displaystyle x\equiv a_{1,2}{\pmod {n_{1}n_{2}}}.} As the other n i {\displaystyle n_{i}} are coprime with n 1 n 2 , {\displaystyle n_{1}n_{2},} this reduces solving the initial problem of k equations to a similar ...

  5. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    If a and b are integers in the range [0, N − 1], then their sum is in the range [0, 2N − 2] and their difference is in the range [−N + 1, N − 1], so determining the representative in [0, N − 1] requires at most one subtraction or addition (respectively) of N. However, the product ab is in the range [0, N 2 − 2N + 1].

  6. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    If p is a prime number which is not a divisor of b, then ab p−1 mod p = a mod p, due to Fermat's little theorem. Inverse: [(−a mod n) + (a mod n)] mod n = 0. b −1 mod n denotes the modular multiplicative inverse, which is defined if and only if b and n are relatively prime, which is the case when the left hand side is defined: [(b −1 ...

  7. List of open-source software for mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_open-source...

    It was originally known as "HECKE and Manin". After a short while it was renamed SAGE, which stands for ‘’Software of Algebra and Geometry Experimentation’’. Sage 0.1 was released in 2005 and almost a year later Sage 1.0 was released. It already consisted of Pari, GAP, Singular and Maxima with an interface that rivals that of Mathematica.

  8. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    In mathematics, the algebra of sets, not to be confused with the mathematical structure of an algebra of sets, defines the properties and laws of sets, the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions ...

  9. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.