Search results
Results from the WOW.Com Content Network
Armature reaction is essential in amplidyne rotating amplifiers. Armature reaction drop is the effect of a magnetic field on the distribution of the flux under main poles of a generator. [5] Since an armature is wound with coils of wire, a magnetic field is set up in the armature whenever a current flows in the coils.
The stator is the stationary part of a rotary system, [1] found in electric generators, electric motors, sirens, mud motors, or biological rotors (such as bacterial flagella or ATP synthase). Energy flows through a stator to or from the rotating component of the system, the rotor .
Armature control is the most common control technique for DC motors. In order to implement this control, the stator flux must be kept constant. To achieve this, either the stator voltage is kept constant or the stator coils are replaced by a permanent magnet. In the latter case, the motor is said to be a permanent magnet DC motor and is driven ...
A series DC motor connects the armature and field windings in series with a common D.C. power source. The motor speed varies as a non-linear function of load torque and armature current; current is common to both the stator and rotor yielding current squared (I^2) behavior [citation needed].
In mechanical terms, the rotor is the rotating part, and the stator is the stationary part of an electrical machine. In electrical terms, the armature is the power-producing component and the field is the magnetic field component of an electrical machine. The armature can be on either the rotor or the stator.
The counter-emf aids the armature resistance to limit the current through the armature. When power is first applied to a motor, the armature does not rotate. At that instant the counter-emf is zero and the only factor limiting the armature current is the armature resistance and inductance.
The armature with a three-phase winding is on the stator where voltage is induced. Direct current (DC), from an external exciter or from a diode bridge mounted on the rotor shaft, produces a magnetic field and energizes the rotating field windings and alternating current energizes the armature windings simultaneously. [8] [7]
The coil is shaped such that the armature can be moved in and out of the space in the center of the coil, altering the coil's inductance and thereby becoming an electromagnet. The movement of the armature is used to provide a mechanical force to some mechanism, such as controlling a solenoid valve. Although typically weak over anything but very ...