Search results
Results from the WOW.Com Content Network
A Bernoulli process is a finite or infinite sequence of independent random variables X 1, X 2, X 3, ..., such that . for each i, the value of X i is either 0 or 1;; for all values of , the probability p that X i = 1 is the same.
Five eight-step random walks from a central point. Some paths appear shorter than eight steps where the route has doubled back on itself. (animated version)In mathematics, a random walk, sometimes known as a drunkard's walk, is a stochastic process that describes a path that consists of a succession of random steps on some mathematical space.
Figure 1. An example of 1000 steps of a Lévy flight in two dimensions. The origin of the motion is at [0,0], the angular direction is uniformly distributed and the step size is distributed according to a Lévy (i.e. stable) distribution with α = 1 and β = 0 which is a Cauchy distribution. Note the presence of large jumps in location compared ...
A basic property about an absorbing Markov chain is the expected number of visits to a transient state j starting from a transient state i (before being absorbed). This can be established to be given by the (i, j) entry of so-called fundamental matrix N, obtained by summing Q k for all k (from 0 to ∞).
Non-uniform random variate generation or pseudo-random number sampling is the numerical practice of generating pseudo-random numbers (PRN) that follow a given probability distribution. Methods are typically based on the availability of a uniformly distributed PRN generator .
The most common formulation of a branching process is that of the Galton–Watson process.Let Z n denote the state in period n (often interpreted as the size of generation n), and let X n,i be a random variable denoting the number of direct successors of member i in period n, where X n,i are independent and identically distributed random variables over all n ∈{ 0, 1, 2, ...} and i ∈ {1 ...
Next consider the sample (10 8 + 4, 10 8 + 7, 10 8 + 13, 10 8 + 16), which gives rise to the same estimated variance as the first sample. The two-pass algorithm computes this variance estimate correctly, but the naïve algorithm returns 29.333333333333332 instead of 30.
Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.