Search results
Results from the WOW.Com Content Network
This is called a short wave fadeout (SWF). These fadeouts last for a few minutes to a few hours and are most severe in the equatorial regions where the Sun is most directly overhead. Although High Frequency signals suffer a fadeout because of the enhanced D-layer, the Sudden Ionospheric Disturbance enhances long wave radio
Ionospheric layers. At night the F layer is the only layer of significant ionization present, while the ionization in the E and D layers is extremely low. During the day, the D and E layers become much more heavily ionized, as does the F layer, which develops an additional, weaker region of ionisation known as the F 1 layer.
Ionospheric storms can happen at any time and location. [6] F-region and D-region ionospheric storms are also considered main categories of ionospheric storms. The F-region storms occur due to sudden increases of energised electrons instilled into Earth's ionosphere. The F-region is the highest region of the ionosphere.
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.
The posterior segment or posterior cavity [1] is the back two-thirds of the eye that includes the anterior hyaloid membrane and all of the optical structures behind it: the vitreous humor, retina, choroid, and optic nerve. [2]
Schematic diagram of the human eye, with the optic disc, or blind spot, at the lower left. Shown is a horizontal cross section of the right eye, viewed from above. A normal optic disc is orange to pink in colour and may vary based on ethnicity. [3] A pale disc is an optic disc which varies in colour from a pale pink or orange colour to white. A ...
This visual field defect is called as bitemporal hemianopia. Anterior chiasmal syndrome, the lesions that affect the ipsilateral optic nerve fibres and the contralateral inferonasal fibres located in the Willebrand knee produce junctional scotoma, i.e., a combination of central scotoma in one eye and temporal hemianopia defect in the other eye. [1]
The signal transmitted from the satellite to the receiver crosses the ionospheric shell in the so-called ionospheric pierce point (IPP). The zenith angle at the IPP is z' and the signal arrives at the receiver with zenith angle z. Here R is the mean Earth radius, H is the mean height of the ionosphere shell.