enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Galilean invariance - Wikipedia

    en.wikipedia.org/wiki/Galilean_invariance

    Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his Dialogue Concerning the Two Chief World Systems using the example of a ship travelling at constant velocity, without rocking, on a smooth sea; any observer below the deck would not be able to tell whether the ...

  3. Galilean electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Galilean_electromagnetism

    Galilean electromagnetism is a formal electromagnetic field theory that is consistent with Galilean invariance.Galilean electromagnetism is useful for describing the electric and magnetic fields in the vicinity of charged bodies moving at non-relativistic speeds relative to the frame of reference.

  4. Lambda2 method - Wikipedia

    en.wikipedia.org/wiki/Lambda2_method

    The Lambda2 method consists of several steps. First we define the velocity gradient tensor ; = [], where is the velocity field. The velocity gradient tensor is then decomposed into its symmetric and antisymmetric parts:

  5. Moving magnet and conductor problem - Wikipedia

    en.wikipedia.org/wiki/Moving_magnet_and...

    An overriding requirement on the descriptions in different frameworks is that they be consistent.Consistency is an issue because Newtonian mechanics predicts one transformation (so-called Galilean invariance) for the forces that drive the charges and cause the current, while electrodynamics as expressed by Maxwell's equations predicts that the fields that give rise to these forces transform ...

  6. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Invariance and unification of physical quantities both arise from four-vectors. [1] The inner product of a 4-vector with itself is equal to a scalar (by definition of the inner product), and since the 4-vectors are physical quantities their magnitudes correspond to physical quantities also.

  7. Galilean transformation - Wikipedia

    en.wikipedia.org/wiki/Galilean_transformation

    The Galilean group is the group of motions of Galilean relativity acting on the four dimensions of space and time, forming the Galilean geometry. This is the passive transformation point of view.

  8. Nonlinear Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_Schrödinger...

    The nonlinear Schrödinger equation is Galilean invariant in the following sense: Given a solution ψ ( x, t ) a new solution can be obtained by replacing x with x + vt everywhere in ψ( x, t ) and by appending a phase factor of e − i v ( x + v t / 2 ) {\displaystyle e^{-iv(x+vt/2)}\,} :

  9. General covariance - Wikipedia

    en.wikipedia.org/wiki/General_covariance

    The relationship between general covariance and general relativity may be summarized by quoting a standard textbook: [3] Mathematics was not sufficiently refined in 1917 to cleave apart the demands for "no prior geometry" and for a geometric, coordinate-independent formulation of physics.