enow.com Web Search

  1. Ads

    related to: reflection matrix linear algebra youtube

Search results

  1. Results from the WOW.Com Content Network
  2. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    Composition has closure and is associative, since matrix multiplication is associative. Notice that both Ref(θ) and Rot(θ) have been represented with orthogonal matrices. These matrices all have a determinant whose absolute value is unity. Rotation matrices have a determinant of +1, and reflection matrices have a determinant of −1.

  3. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.

  4. Householder transformation - Wikipedia

    en.wikipedia.org/wiki/Householder_transformation

    In linear algebra, a Householder transformation (also known as a Householder reflection or elementary reflector) is a linear transformation that describes a reflection about a plane or hyperplane containing the origin. The Householder transformation was used in a 1958 paper by Alston Scott Householder. [1]

  5. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.

  6. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Reflection. Reflections, or mirror isometries, denoted by F c,v, where c is a point in the plane and v is a unit vector in R 2.(F is for "flip".) have the effect of reflecting the point p in the line L that is perpendicular to v and that passes through c.

  7. Conformal linear transformation - Wikipedia

    en.wikipedia.org/wiki/Conformal_linear...

    Therefore, every conformal linear transformation can be expressed as the composition of up to n reflections and a dilation. Because every reflection across a hyperplane reverses the orientation of a pseudo-Euclidean space, the composition of any even number of reflections and a dilation by a positive real number is a proper conformal linear ...

  8. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    Transformations with reflection are represented by matrices with a determinant of −1. This allows the concept of rotation and reflection to be generalized to higher dimensions. In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix.

  9. Mirrors and Reflections - Wikipedia

    en.wikipedia.org/wiki/Mirrors_and_Reflections

    Mirrors and Reflections is aimed at undergraduate mathematics students, and uses an intuitive and heavily visual approach suitable for that level. [1] [2] [3] its readers are expected to already have a solid background in linear algebra and some group theory.

  1. Ads

    related to: reflection matrix linear algebra youtube