Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
To reduce the probability of committing a type I error, making the alpha value more stringent is both simple and efficient. To decrease the probability of committing a type II error, which is closely associated with analyses' power, either increasing the test's sample size or relaxing the alpha level could increase the analyses' power.
For a Type I error, it is shown as α (alpha) and is known as the size of the test and is 1 minus the specificity of the test. This quantity is sometimes referred to as the confidence of the test, or the level of significance (LOS) of the test. For a Type II error, it is shown as β (beta) and is 1 minus the power or 1 minus the sensitivity of ...
The Beta distribution on [0,1], a family of two-parameter distributions with one mode, of which the uniform distribution is a special case, and which is useful in estimating success probabilities. The four-parameter Beta distribution, a straight-forward generalization of the Beta distribution to arbitrary bounded intervals [,].
In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. [1] The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. [2]
Some distributions have been specially named as compounds: beta-binomial distribution, Beta negative binomial distribution, gamma-normal distribution. Examples: If X is a Binomial(n,p) random variable, and parameter p is a random variable with beta(α, β) distribution, then X is distributed as a Beta-Binomial(α,β,n).
Alpha is a way to measure excess return, while beta is used to measure the volatility, or risk, of an asset. Beta might also be referred to as the return you can earn by passively owning the market.
The beta function is also important in statistics, e.g. for the beta distribution and beta prime distribution. As briefly alluded to previously, the beta function is closely tied with the gamma function and plays an important role in calculus .