Search results
Results from the WOW.Com Content Network
Fermium is produced by the bombardment of lighter actinides with neutrons in a nuclear reactor. Fermium-257 is the heaviest isotope that is obtained via neutron capture, and can only be produced in picogram quantities.
The Gmelin rare earths handbook lists 1522 °C and 1550 °C as two melting points given in the literature, the most recent reference [Handbook on the chemistry and physics of rare earths, vol.12 (1989)] is given with 1529 °C.
{{Periodic table (melting point)|state=expanded}} or {{Periodic table (melting point)|state=collapsed}}This template's initial visibility currently defaults to autocollapse, meaning that if there is another collapsible item on the page (a navbox, sidebar, or table with the collapsible attribute), it is hidden apart from its title bar; if not, it is fully visible.
Ununennium is predicted to have a melting point between 0 °C and 30 °C: thus it may be a liquid at room temperature. [6] It is not known whether this continues the trend of decreasing melting points down the group, as caesium's melting point is 28.5 °C and francium's is estimated to be around 8.0 °C. [ 88 ]
However, at very high pressures higher melting temperatures are generally observed as the liquid usually occupies a larger volume than the solid making melting more thermodynamically unfavorable at elevated pressure. If the liquid has a smaller volume than the solid (as for ice and liquid water) a higher pressure leads to a lower melting point.
Like the periodic table, the list below organizes the elements by the number of protons in their atoms; it can also be organized by other properties, such as atomic weight, density, and electronegativity. For more detailed information about the origins of element names, see List of chemical element name etymologies.
Liquid francium—if created—should have a surface tension of 0.05092 N/m at its melting point. [10] Francium's melting point was estimated to be around 8.0 °C (46.4 °F); [11] a value of 27 °C (81 °F) is also often encountered. [8] The melting point is uncertain because of the element's extreme rarity and radioactivity; a different ...
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.