enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    Fresnel equations. Partial transmission and reflection of a pulse travelling from a low to a high refractive index medium. At near-grazing incidence, media interfaces appear mirror-like especially due to reflection of the s polarization, despite being poor reflectors at normal incidence. Polarized sunglasses block the s polarization, greatly ...

  3. Fresnel lens - Wikipedia

    en.wikipedia.org/wiki/Fresnel_lens

    A Fresnel lens (/ ˈfreɪnɛl, - nəl / FRAY-nel, -⁠nəl; / ˈfrɛnɛl, - əl / FREN-el, -⁠əl; or / freɪˈnɛl / fray-NEL[ 1 ]) is a type of composite compact lens which reduces the amount of material required compared to a conventional lens by dividing the lens into a set of concentric annular sections.

  4. Fresnel rhomb - Wikipedia

    en.wikipedia.org/wiki/Fresnel_rhomb

    A Fresnel rhomb is an optical prism that introduces a 90° phase difference between two perpendicular components of polarization, by means of two total internal reflections. If the incident beam is linearly polarized at 45° to the plane of incidence and reflection, the emerging beam is circularly polarized, and vice versa.

  5. Augustin-Jean Fresnel - Wikipedia

    en.wikipedia.org/wiki/Augustin-Jean_Fresnel

    École Polytech (1821–1824) Augustin-Jean Fresnel[ Note 1 ] (10 May 1788 – 14 July 1827) was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Newton 's corpuscular theory, from the late 1830s [ 3 ] until the end of the 19th century.

  6. Huygens–Fresnel principle - Wikipedia

    en.wikipedia.org/wiki/Huygens–Fresnel_principle

    Wave refraction in the manner of Huygens Wave diffraction in the manner of Huygens and Fresnel. The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere. [1]

  7. Plane of polarization - Wikipedia

    en.wikipedia.org/wiki/Plane_of_polarization

    Fresnel's "plane of polarization", traditionally used in optics, is the plane containing the magnetic vectors (B & H) and the wave-normal. Malus's original "plane of polarization" was the plane containing the magnetic vectors and the ray. (In an isotropic medium, θ = 0 and Malus's plane merges with Fresnel's.)

  8. Prism (optics) - Wikipedia

    en.wikipedia.org/wiki/Prism_(optics)

    Prism (optics) A familiar dispersive prism. An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base ...

  9. Fresnel number - Wikipedia

    en.wikipedia.org/wiki/Fresnel_number

    The Fresnel number is a useful concept in physical optics. The Fresnel number establishes a coarse criterion to define the near and far field approximations. Essentially, if Fresnel number is small – less than roughly 1 – the beam is said to be in the far field. If Fresnel number is larger than 1, the beam is said to be near field.