enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexagonal lattice - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_lattice

    Vectors and are primitive translation vectors. The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [ 1 ] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices.

  3. Parallel transport - Wikipedia

    en.wikipedia.org/wiki/Parallel_transport

    In differential geometry, parallel transport (or parallel translation [a]) is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection (a covariant derivative or connection on the tangent bundle ), then this connection allows one to transport vectors of the manifold along ...

  4. Bravais lattice - Wikipedia

    en.wikipedia.org/wiki/Bravais_lattice

    If the lattice or crystal is 2-dimensional, the primitive cell has a minimum area; likewise in 3 dimensions the primitive cell has a minimum volume. Despite this rigid minimum-size requirement, there is not one unique choice of primitive unit cell. In fact, all cells whose borders are primitive translation vectors will be primitive unit cells.

  5. Oblique lattice - Wikipedia

    en.wikipedia.org/wiki/Oblique_lattice

    This crystallography -related article is a stub. You can help Wikipedia by expanding it.

  6. Miller index - Wikipedia

    en.wikipedia.org/wiki/Miller_index

    In either case, one needs to choose the three lattice vectors a 1, a 2, and a 3 that define the unit cell (note that the conventional unit cell may be larger than the primitive cell of the Bravais lattice, as the examples below illustrate). Given these, the three primitive reciprocal lattice vectors are also determined (denoted b 1, b 2, and b 3).

  7. Laue equations - Wikipedia

    en.wikipedia.org/wiki/Laue_equations

    Let ,, be primitive translation vectors (shortly called primitive vectors) of a crystal lattice, where atoms are located at lattice points described by = + + with , , and as any integers. (So x {\displaystyle \mathbf {x} } indicating each lattice point is an integer linear combination of the primitive vectors.)

  8. Rectangular lattice - Wikipedia

    en.wikipedia.org/wiki/Rectangular_lattice

    The primitive rectangular lattice can also be described by a centered rhombic unit cell, while the centered rectangular lattice can also be described by a primitive rhombic unit cell. Note that the length a {\displaystyle a} in the lower row is not the same as in the upper row.

  9. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    Likewise, vectors whose components are contravariant push forward under smooth mappings, so the operation assigning the space of (contravariant) vectors to a smooth manifold is a covariant functor. Secondly, in the classical approach to differential geometry, it is not bases of the tangent bundle that are the most primitive object, but rather ...