Search results
Results from the WOW.Com Content Network
There is a half-life describing any exponential-decay process. For example: As noted above, in radioactive decay the half-life is the length of time after which there is a 50% chance that an atom will have undergone nuclear decay. It varies depending on the atom type and isotope, and is usually determined experimentally. See List of nuclides.
In principle a half-life, a third-life, or even a (1/√2)-life, could be used in exactly the same way as half-life; but the mean life and half-life t 1/2 have been adopted as standard times associated with exponential decay. Those parameters can be related to the following time-dependent parameters:
Any one of decay constant, mean lifetime, or half-life is sufficient to characterise the decay. The notation λ for the decay constant is a remnant of the usual notation for an eigenvalue . In this case, λ is the eigenvalue of the negative of the differential operator with N ( t ) as the corresponding eigenfunction .
Example: 60 Co decays into 60 Ni. The mass difference Δm is 0.003 u. The radiated energy is approximately 2.8 MeV. The molar weight is 59.93. The half life T of 5.27 year corresponds to the activity A = N [ ln(2) / T ], where N is the number of atoms per mol, and T is the half-life.
The decay scheme of a radioactive substance is a graphical presentation of all the transitions occurring in a decay, and of their relationships. Examples are shown below. It is useful to think of the decay scheme as placed in a coordinate system, where the vertical axis is energy, increasing from bottom to top, and the horizontal axis is the proton number, increasing from left to right.
In practice, this means that alpha particles from all alpha-emitting isotopes across many orders of magnitude of difference in half-life, all nevertheless have about the same decay energy. Formulated in 1911 by Hans Geiger and John Mitchell Nuttall as a relation between the decay constant and the range of alpha particles in air, [ 1 ] in its ...
Another example is the decay of hydrogen-3 into helium-3 with a half-life of about 12.3 years: 3 1 H → 3 2 He + e − + ν e. An example of positron emission (β + decay) is the decay of magnesium-23 into sodium-23 with a half-life of about 11.3 s: 23 12 Mg → 23 11 Na + e + + ν e
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.