Search results
Results from the WOW.Com Content Network
In carbohydrate chemistry carbohydrate acetalisation is an organic reaction and a very effective means of providing a protecting group. The example below depicts the acetalisation reaction of D-ribose 1. With acetone or 2,2-dimethoxypropane as the acetalisation reagent the reaction is under thermodynamic reaction control and results in the ...
Since many sugars are polyhydroxy aldehydes and ketones, sugars are a rich source of acetals and ketals. Most glycosidic bonds in carbohydrates and other polysaccharides are acetal linkages. [2] Cellulose is a ubiquitous example of a polyacetal. Benzylidene acetal and acetonide as protecting groups used in research of modified sugars.
Carbohydrate metabolism is the whole of the biochemical processes responsible for the metabolic formation, breakdown, and interconversion of carbohydrates in living organisms. Carbohydrates are central to many essential metabolic pathways . [ 1 ]
Humans and most eukaryotes have evolved an ACC with CT and BC catalytic domains and BCCP domains on a single polypeptide. Most plants also have this homomeric form in cytosol. [ 5 ] ACC functional regions, starting from the N-terminus to C-terminus are the biotin carboxylase (BC), biotin binding (BB), carboxyl transferase (CT), and ATP-binding ...
Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. [2] Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for energy production.
An example of a coupled reaction is the phosphorylation of fructose-6-phosphate to form the intermediate fructose-1,6-bisphosphate by the enzyme phosphofructokinase accompanied by the hydrolysis of ATP in the pathway of glycolysis. The resulting chemical reaction within the metabolic pathway is highly thermodynamically favorable and, as a ...
For example, most plants are photolithoautotrophic, since they use light as an energy source, water as electron donor, and CO 2 as a carbon source. All animals and fungi are chemoorganoheterotrophic , since they use organic substances both as chemical energy sources and as electron/hydrogen donors and carbon sources.
Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.