Search results
Results from the WOW.Com Content Network
The simple carbon sugars photosynthesis produces are then used to form other organic compounds, such as the building material cellulose, the precursors for lipid and amino acid biosynthesis, or as a fuel in cellular respiration. The latter occurs not only in plants but also in animals when the carbon and energy from plants is passed through a ...
Only if the light intensity is above a plant specific value, called the compensation point the plant assimilates more carbon and releases more oxygen by photosynthesis than it consumes by cellular respiration for its own current energy demand. Photosynthesis measurement systems are not designed to directly measure the amount of light absorbed ...
To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence). The energy, but not the electron itself, may be passed onto another molecule; this is called resonance energy transfer.
In the dark, plants instead release sucrose into the phloem from their starch reserves to provide energy for the plant. The Calvin cycle thus happens when light is available independent of the kind of photosynthesis ( C3 carbon fixation , C4 carbon fixation , and crassulacean acid metabolism (CAM) ); CAM plants store malic acid in their ...
For premium support please call: 800-290-4726 more ways to reach us
Structure of a plant cell. Plant cells are the cells present in green plants, photosynthetic eukaryotes of the kingdom Plantae.Their distinctive features include primary cell walls containing cellulose, hemicelluloses and pectin, the presence of plastids with the capability to perform photosynthesis and store starch, a large vacuole that regulates turgor pressure, the absence of flagella or ...
Photosystem II is present on the thylakoid membranes inside chloroplasts, the site of photosynthesis in green plants. [9] The structure of Photosystem II is remarkably similar to the bacterial reaction center, and it is theorized that they share a common ancestor. The core of Photosystem II consists of two subunits referred to as D1 and D2 ...
The antenna complex contains hundreds of chlorophyll molecules which funnel the excitation energy to the center of the photosystem. At the reaction center, the energy will be trapped and transferred to produce a high energy molecule. [2] The main function of PSII is to efficiently split water into oxygen molecules and protons.