Search results
Results from the WOW.Com Content Network
Oxidation numbers are assigned to elements in a molecule such that the overall sum is zero in a neutral molecule. The number indicates the degree of oxidation of each element caused by molecular bonding. In ionic compounds, the oxidation numbers are the same as the element's ionic charge.
An atom (or ion) whose oxidation number increases in a redox reaction is said to be oxidized (and is called a reducing agent). It is accomplished by loss of one or more electrons. The atom whose oxidation number decreases gains (receives) one or more electrons and is said to be reduced. This relation can be remembered by the following mnemonics.
In the binuclear ion [Co 2 (OH 2) 10] 4+ each bridging water molecule donates one pair of electrons to one cobalt ion and another pair to the other cobalt ion. The Co-O (bridging) bond lengths are 213 picometers, and the Co-O (terminal) bond lengths are 10 pm shorter.
A water molecule in the first solvation shell of an aqua ion may exchange places with a water molecule in the bulk solvent. It is usually assumed that the rate-determining step is a dissociation reaction. [M(H 2 O) n] z+ → [M(H 2 O) n-1] z+ * + H 2 O. The * symbol signifies that this is the transition state in a chemical reaction. The rate of ...
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
Organic redox reactions: the Birch reduction. Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds.In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. [1]
In chemistry, electron counting is a formalism for assigning a number of valence electrons to individual atoms in a molecule. It is used for classifying compounds and for explaining or predicting their electronic structure and bonding. [1] Many rules in chemistry rely on electron-counting:
The first step is then a substitution reaction involving the displacement of a bound water molecule by ammonia forming the tetrahedral complex [Ag(NH 3)(H 2 O) 3] +. In the second step, all the aqua ligands are lost and a linear, two-coordinate product [H 3 N–Ag–NH 3 ] + is formed.