enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:Gauss-Seidel iteration sequence for two subsystems.pdf

    en.wikipedia.org/wiki/File:Gauss-Seidel...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  3. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/GaussSeidel_method

    At any step in a Gauss-Seidel iteration, solve the first equation for in terms of , …,; then solve the second equation for in terms of just found and the remaining , …,; and continue to . Then, repeat iterations until convergence is achieved, or break if the divergence in the solutions start to diverge beyond a predefined level.

  4. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...

  5. Successive over-relaxation - Wikipedia

    en.wikipedia.org/wiki/Successive_over-relaxation

    To solve the equations, we choose a relaxation factor = and an initial guess vector = (,,,). According to the successive over-relaxation algorithm, the following table is obtained, representing an exemplary iteration with approximations, which ideally, but not necessarily, finds the exact solution, (3, −2, 2, 1) , in 38 steps.

  6. Multigrid method - Wikipedia

    en.wikipedia.org/wiki/Multigrid_method

    In other words, it can solve these problems to a given accuracy in a number of operations that is proportional to the number of unknowns. Assume that one has a differential equation which can be solved approximately (with a given accuracy) on a grid with a given grid point density .

  7. Verlet integration - Wikipedia

    en.wikipedia.org/wiki/Verlet_integration

    When approximating the constraints locally to first order, this is the same as the Gauss–Seidel method. For small matrices it is known that LU decomposition is faster. Large systems can be divided into clusters (for example, each ragdoll = cluster). Inside clusters the LU method is used, between clusters the Gauss–Seidel method is used. The ...

  8. Stein-Rosenberg theorem - Wikipedia

    en.wikipedia.org/wiki/Stein-Rosenberg_theorem

    The Stein-Rosenberg theorem, proved in 1948, states that under certain premises, the Jacobi method and the Gauss-Seidel method are either both convergent, or both divergent. If they are convergent, then the Gauss-Seidel is asymptotically faster than the Jacobi method.

  9. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Gauss–Seidel method. Successive over-relaxation (SOR) — a technique to accelerate the Gauss–Seidel method Symmetric successive over-relaxation (SSOR) — variant of SOR for symmetric matrices; Backfitting algorithm — iterative procedure used to fit a generalized additive model, often equivalent to Gauss–Seidel; Modified Richardson ...