Search results
Results from the WOW.Com Content Network
A nutritional Calorie is equivalent to a thousand chemical or thermodynamic calories (abbreviated "cal" with a lower case "c") or one kilocalorie (kcal). Because food energy is commonly measured in Calories, the energy density of food is commonly called "caloric density". [ 7 ]
the small calorie (gram-calorie, cal) is 4.184 J exactly. It was originally defined so that the specific heat capacity of liquid water would be 1 cal/(°C⋅g). The grand calorie (kilocalorie, kilogram-calorie, food calorie, kcal, Cal) is 1000 small calories, 4184 J exactly. It was defined so that the specific heat capacity of water would be 1 ...
The "grand calorie" (also "kilocalorie", "kilogram-calorie", or "food calorie"; "kcal" or "Cal") is 1000 cal, that is, exactly 4184 J. It was originally defined so that the heat capacity of 1 kg of water would be 1 kcal/°C. With these units of heat energy, the units of heat capacity are 1 cal/°C = 4.184 J/K ; 1 kcal/°C = 4184 J/K.
calorie: Cal (Calorie) Cal 1.0 Cal (4.2 kJ) megacalorie: Mcal Mcal 1.0 Mcal (4.2 MJ) kilocalorie: kcal kcal 1.0 kcal (4.2 kJ) calorie: cal cal 1.0 cal (4.2 J) millicalorie ...
This Wikipedia page provides a list of units of energy used in the template for converting measurements.
The calorie is a unit of energy that originated from the caloric theory of heat. [1] [2] The large calorie, food calorie, dietary calorie, kilocalorie, or kilogram calorie is defined as the amount of heat needed to raise the temperature of one liter of water by one degree Celsius (or one kelvin).
In nutritional contexts, the latter is often (especially in US) the "large" variant of the unit, also written "Calorie" (with symbol Cal, both with capital "C") or "kilocalorie" (kcal), and equivalent to 4184 J or 4.184 kJ. [3] Thus, for example, fats and ethanol have the greatest amount of food energy per unit mass, 37 and 29 kJ/g (9 and 7 ...
Only one equation of state will not be sufficient to reconstitute the fundamental equation. All equations of state will be needed to fully characterize the thermodynamic system. Note that what is commonly called "the equation of state" is just the "mechanical" equation of state involving the Helmholtz potential and the volume: