Search results
Results from the WOW.Com Content Network
Potassium oxide is produced from the reaction of oxygen and potassium; this reaction affords potassium peroxide, K 2 O 2. Treatment of the peroxide with potassium produces the oxide: [5] K 2 O 2 + 2 K → 2 K 2 O. Alternatively and more conveniently, K 2 O is synthesized by heating potassium nitrate with metallic potassium: 2 KNO 3 + 10 K → 6 ...
Potassium is a chemical element; it has symbol K (from Neo-Latin kalium) and atomic number 19. It is a silvery white metal that is soft enough to easily cut with a knife. [9] Potassium metal reacts rapidly with atmospheric oxygen to form flaky white potassium peroxide in only seconds of exposure.
This table lists only the occurrences in compounds ... potassium: K −1 +1: 1 [27] 20 calcium: ... and systematically in the table {{Infobox element/symbol-to ...
The table is based on that of Greenwood and Earnshaw, [21] with additions noted. Every element exists in oxidation state 0 when it is the pure non-ionized element in any phase, whether monatomic or polyatomic allotrope .
Ruthenium is a chemical element; it has symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is unreactive to most chemicals.
An oxide (/ ˈ ɒ k s aɪ d /) is a chemical compound containing at least one oxygen atom and one other element [1] in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of –2) of oxygen, an O 2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials ...
Strontium is a chemical element; it has symbol Sr and atomic number 38. An alkaline earth metal, strontium is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is exposed to air.
A period 2 element is one of the chemical elements in the second row (or period) of the periodic table of the chemical elements.The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases; a new row is started when chemical behavior begins to repeat, creating columns of elements with similar properties.