Search results
Results from the WOW.Com Content Network
The basic rule for divisibility by 4 is that if the number formed by the last two digits in a number is divisible by 4, the original number is divisible by 4; [2] [3] this is because 100 is divisible by 4 and so adding hundreds, thousands, etc. is simply adding another number that is divisible by 4. If any number ends in a two digit number that ...
Later, on a calendar yet to come (we'll get to it), it was decreed that years divisible by 100 not follow the four-year leap day rule un ... 1800 and 1900, but 2000 had one. In the next 500 years ...
The rule is that if the year is divisible by 100 and not divisible by 400, the leap year is skipped. The year 2000 was a leap year, for example, but the years 1700, 1800, and 1900 were not.
For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n , then so is − m . The tables below only list positive divisors.
This eliminates 3 of the 4 end-of-century years in a 400-year period. For example, the years 1600, 2000, 2400, and 2800 are century leap years since those numbers are evenly divisible by 400, while 1700, 1800, 1900, 2100, 2200, 2300, 2500, 2600, 2700, 2900, and 3000 are common years despite being evenly divisible by 4. This scheme brings the ...
2005 – A vertically symmetric number; 2006 – number of subsets of {1,2,3,4,5,6,7,8,9,10,11} with relatively prime elements [6] 2007 – 2 2007 + 2007 2 is prime [7] 2008 – number of 4 × 4 matrices with nonnegative integer entries and row and column sums equal to 3 [8] 2009 = 7 4 − 7 3 − 7 2; 2010 – number of compositions of 12 into ...
For instance, consider division by the regular number 54 = 2 1 3 3. 54 is a divisor of 60 3, and 60 3 /54 = 4000, so dividing by 54 in sexagesimal can be accomplished by multiplying by 4000 and shifting three places. In sexagesimal 4000 = 1×3600 + 6×60 + 40×1, or (as listed by Joyce) 1:6:40.
A natural number is divisible by three if the sum of its digits in base 10 is divisible by 3. For example, the number 21 is divisible by three (3 times 7) and the sum of its digits is 2 + 1 = 3. Because of this, the reverse of any number that is divisible by three (or indeed, any permutation of its digits) is also divisible by three. For ...