Search results
Results from the WOW.Com Content Network
where m is the Bragg order (a positive integer), λ B the diffracted wavelength, Λ the fringe spacing of the grating, θ the angle between the incident beam and the normal (N) of the entrance surface and φ the angle between the normal and the grating vector (K G). Radiation that does not match Bragg's law will pass through the VBG undiffracted.
While the Bragg formulation assumes a unique choice of direct lattice planes and specular reflection of the incident X-rays, the Von Laue formula only assumes monochromatic light and that each scattering center acts as a source of secondary wavelets as described by the Huygens principle. Each scattered wave contributes to a new plane wave given by:
A Bragg reflection is the splitting of the dispersion surface at the border of the Brillouin zone in reciprocal space. There is a gap between the dispersion surfaces in which no travelling waves are allowed. For a non-absorbing crystal, the reflection curve shows a range of total reflection, the so-called Darwin plateau.
Time-resolved simulation of a pulse reflecting from a Bragg mirror. A distributed Bragg reflector (DBR) is a reflector used in waveguides, such as optical fibers.It is a structure formed from multiple layers of alternating materials with different refractive index, or by periodic variation of some characteristic (such as height) of a dielectric waveguide, resulting in periodic variation in the ...
Download as PDF; Printable version; In other projects Appearance. move to sidebar hide. From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Bragg's law;
The Borrmann effect—a dramatic increase in transparency to X-ray beams—is observed when X-rays satisfying Bragg's law diffract through a perfect crystal. The minimization of absorption seen in the Borrmann effect has been explained by noting that the electric field of the X-ray beam approaches zero amplitude at the crystal planes, thus ...
The overall reflection of a layer structure is the sum of an infinite number of reflections. The transfer-matrix method is based on the fact that, according to Maxwell's equations , there are simple continuity conditions for the electric field across boundaries from one medium to the next.
Crystal monochromators utilize the atomic lattice structure of a crystal to diffract incident radiation at specific angles. The diffraction condition is defined by Bragg’s Law: nλ=2dsinθ Where: n: Order of diffraction, λ: Wavelength of the incident radiation, d: Spacing between atomic planes in the crystal, θ: Angle of incidence.