enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    His solution gives only one root, even when both roots are positive. [28] The Indian mathematician Brahmagupta included a generic method for finding one root of a quadratic equation in his treatise Brāhmasphuṭasiddhānta (circa 628 AD), written out in words in the style of the time but more or less equivalent to the modern symbolic formula.

  3. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    In mathematics, a quadratic function of a single variable is a function of the form [1] = + +,,where ⁠ ⁠ is its variable, and ⁠ ⁠, ⁠ ⁠, and ⁠ ⁠ are coefficients.The expression ⁠ + + ⁠, especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two.

  4. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    A quadratic equation always has two roots, if complex roots are included and a double root is counted for two. A quadratic equation can be factored into an equivalent equation [ 3 ] a x 2 + b x + c = a ( x − r ) ( x − s ) = 0 {\displaystyle ax^{2}+bx+c=a(x-r)(x-s)=0} where r and s are the solutions for x .

  5. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.

  6. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    This requires some care in the presence of multiple roots; but a complex root and its conjugate do have the same multiplicity (and this lemma is not hard to prove). It can also be worked around by considering only irreducible polynomials ; any real polynomial of odd degree must have an irreducible factor of odd degree, which (having no multiple ...

  7. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    A root is a simple root if = or a multiple root if . Simple roots are Lipschitz continuous with respect to coefficients but multiple roots are not. In other words, simple roots have bounded sensitivities but multiple roots are infinitely sensitive if the coefficients are perturbed arbitrarily.

  8. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.

  9. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.