Search results
Results from the WOW.Com Content Network
One of the first considerations of gravitational deflection of light was published in 1801, when Johann Georg von Soldner pointed out that Newtonian gravity predicts that starlight will be deflected when it passes near a massive object. Initially, in a paper published in 1911, Einstein had incorrectly calculated that the amount of light ...
In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation.Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle.
This section follows the analysis of Fritz Rohrlich (1965), [6] who shows that a charged particle and a neutral particle fall equally fast in a gravitational field. Likewise, a charged particle at rest in a gravitational field does not radiate in its rest frame, but it does so in the frame of a free-falling observer.
The gravitational redshift of a light wave as it moves upwards against a gravitational field (caused by the yellow star below). Einstein predicted the gravitational redshift of light from the equivalence principle in 1907, and it was predicted that this effect might be measured in the spectral lines of a white dwarf star , which has a very high ...
where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant. The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry ...
E is the electric field; B g is the gravitomagnetic field, with SI unit s −1; B is the magnetic field; ρ g is mass density, with SI unit kg⋅m −3; ρ is charge density; J g is mass current density or mass flux (J g = ρ g v ρ, where v ρ is the velocity of the mass flow), with SI unit kg⋅m −2 ⋅s −1; J is electric current density ...
where G is the gravitational constant, M the mass of the deflecting object and c the speed of light. A naive application of Newtonian gravity can yield exactly half this value, where the light ray is assumed as a massed particle and scattered by the gravitational potential well.
In a similar way, Einstein predicted the gravitational deflection of light: in a gravitational field, light is deflected downward, to the center of the gravitational field. Quantitatively, his results were off by a factor of two; the correct derivation requires a more complete formulation of the theory of general relativity, not just the ...