Search results
Results from the WOW.Com Content Network
The term Cox regression model (omitting proportional hazards) is sometimes used to describe the extension of the Cox model to include time-dependent factors. However, this usage is potentially ambiguous since the Cox proportional hazards model can itself be described as a regression model.
Extensions of the Cox proportional hazard models are popular models in social sciences and medical science to assess associations between variables and risk of recurrence, or to predict recurrent event outcomes. Many extensions of survival models based on the Cox proportional hazards approach have been proposed to handle recurrent event data.
In full generality, the accelerated failure time model can be specified as [2] (|) = ()where denotes the joint effect of covariates, typically = ([+ +]). (Specifying the regression coefficients with a negative sign implies that high values of the covariates increase the survival time, but this is merely a sign convention; without a negative sign, they increase the hazard.)
The Cox PH regression model is a linear model. It is similar to linear regression and logistic regression. Specifically, these methods assume that a single line, curve, plane, or surface is sufficient to separate groups (alive, dead) or to estimate a quantitative response (survival time).
Connections between threshold regression models derived from first hitting times and the ubiquitous Cox proportional hazards regression model [14] was investigated in. [15] Applications of threshold regression range over many fields, including the physical and natural sciences, engineering, social sciences, economics and business, agriculture ...
The process is named after the statistician David Cox, who first published the model in 1955. [1] Cox processes are used to generate simulations of spike trains (the sequence of action potentials generated by a neuron), [2] and also in financial mathematics where they produce a "useful framework for modeling prices of financial instruments in ...
Cox's 1958 paper [18] and further publications in the 1960s addressed the case of binary logistic regression. [19] The proportional hazards model, which is widely used in the analysis of survival data, was developed by him in 1972. [20] [21] An example of the use of the proportional hazards model is in survival analysis in medical research. The ...
In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...