enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Google JAX - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    JAX is a machine learning framework for transforming numerical functions developed by Google with some contributions from Nvidia. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).

  3. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  5. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    Google JAX is a machine learning framework for transforming numerical functions. [ 71 ] [ 72 ] [ 73 ] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and TensorFlow's XLA (Accelerated Linear Algebra).

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    Torch is an open-source machine learning library, a scientific computing framework, and a scripting language based on Lua. [3] It provides LuaJIT interfaces to deep learning algorithms implemented in C. It was created by the Idiap Research Institute at EPFL. Torch development moved in 2017 to PyTorch, a port of the library to Python. [4] [5] [6]

  8. Chainer - Wikipedia

    en.wikipedia.org/wiki/Chainer

    Chainer was the first deep learning framework to introduce the define-by-run approach. [ 10 ] [ 11 ] The traditional procedure to train a network was in two phases: define the fixed connections between mathematical operations (such as matrix multiplication and nonlinear activations) in the network, and then run the actual training calculation.

  9. Neural scaling law - Wikipedia

    en.wikipedia.org/wiki/Neural_scaling_law

    In machine learning, a neural scaling law is an empirical scaling law that describes how neural network performance changes as key factors are scaled up or down. These factors typically include the number of parameters, training dataset size, [ 1 ] [ 2 ] and training cost.

  1. Related searches machine learning and deep difference calculator tutorial python download

    data mining vs machine learningwhat is machine learning
    machine learning approachestypes of machine learning
    machine learning wiki