enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stereographic projection - Wikipedia

    en.wikipedia.org/wiki/Stereographic_projection

    Craters which are circles on the sphere appear circular in this projection, regardless of whether they are close to the pole or the edge of the map. The stereographic is the only projection that maps all circles on a sphere to circles on a plane. This property is valuable in planetary mapping where craters are typical features.

  3. Spherical circle - Wikipedia

    en.wikipedia.org/wiki/Spherical_circle

    A circle with non-zero geodesic curvature is called a small circle, and is analogous to a circle in the plane. A small circle separates the sphere into two spherical disks or spherical caps, each with the circle as its boundary. For any triple of distinct non-antipodal points a unique small circle passes through all three.

  4. 3D projection - Wikipedia

    en.wikipedia.org/wiki/3D_projection

    If the normal of the viewing plane (the camera direction) is parallel to one of the primary axes (which is the x, y, or z axis), the mathematical transformation is as follows; To project the 3D point , , onto the 2D point , using an orthographic projection parallel to the y axis (where positive y represents forward direction - profile view ...

  5. Peirce quincuncial projection - Wikipedia

    en.wikipedia.org/wiki/Peirce_quincuncial_projection

    The maturation of complex analysis led to general techniques for conformal mapping, where points of a flat surface are handled as numbers on the complex plane.While working at the United States Coast and Geodetic Survey, the American philosopher Charles Sanders Peirce published his projection in 1879, [2] having been inspired by H. A. Schwarz's 1869 conformal transformation of a circle onto a ...

  6. Gnomonic projection - Wikipedia

    en.wikipedia.org/wiki/Gnomonic_projection

    Gnomonic projection of a portion of the north hemisphere centered on the geographic North Pole The gnomonic projection with Tissot's indicatrix of deformation. A gnomonic projection, also known as a central projection or rectilinear projection, is a perspective projection of a sphere, with center of projection at the sphere's center, onto any plane not passing through the center, most commonly ...

  7. Möbius transformation - Wikipedia

    en.wikipedia.org/wiki/Möbius_transformation

    Möbius transformations are defined on the extended complex plane ^ = {} (i.e., the complex plane augmented by the point at infinity).. Stereographic projection identifies ^ with a sphere, which is then called the Riemann sphere; alternatively, ^ can be thought of as the complex projective line.

  8. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...

  9. Lambert azimuthal equal-area projection - Wikipedia

    en.wikipedia.org/wiki/Lambert_azimuthal_equal...

    It sends the point (0, 0, −1) to (0, 0), the equator z = 0 to the circle of radius √ 2 centered at (0, 0), and the lower hemisphere z < 0 to the open disk contained in that circle. The projection is a diffeomorphism (a bijection that is infinitely differentiable in both directions) between the sphere (minus (0, 0, 1)) and the open disk of ...