enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power (statistics) - Wikipedia

    en.wikipedia.org/wiki/Power_(statistics)

    An example of the relationship between sample size and power levels. Higher power requires larger sample sizes. Statistical power may depend on a number of factors. Some factors may be particular to a specific testing situation, but in normal use, power depends on the following three aspects that can be potentially controlled by the practitioner:

  3. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1] The choice of the test depends on many properties of the research question. The vast majority of studies can be addressed by 30 of the 100 or so statistical tests in use. [3] [4] [5]

  4. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    The above image shows a table with some of the most common test statistics and their corresponding tests or models. A statistical hypothesis test is a method of statistical inference used to decide whether the data sufficiently supports a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic.

  5. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    Sample sizes may be evaluated by the quality of the resulting estimates, as follows. It is usually determined on the basis of the cost, time or convenience of data collection and the need for sufficient statistical power. For example, if a proportion is being estimated, one may wish to have the 95% confidence interval be

  6. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    An example of this is publication bias, which occurs when scientists report results only when the estimated effect sizes are large or are statistically significant. As a result, if many researchers carry out studies with low statistical power, the reported effect sizes will tend to be larger than the true (population) effects, if any. [7]

  7. Positive and negative predictive values - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative...

    The positive and negative predictive values (PPV and NPV respectively) are the proportions of positive and negative results in statistics and diagnostic tests that are true positive and true negative results, respectively. [1] The PPV and NPV describe the performance of a diagnostic test or other statistical measure.

  8. ANOVA on ranks - Wikipedia

    en.wikipedia.org/wiki/ANOVA_on_ranks

    It may result in a known statistic (e.g., in the two independent samples layout ranking results in the Wilcoxon rank-sum / Mann–Whitney U test), and provides the desired robustness and increased statistical power that is sought. For example, Monte Carlo studies have shown that the rank transformation in the two independent samples t-test ...

  9. Neyman–Pearson lemma - Wikipedia

    en.wikipedia.org/wiki/Neyman–Pearson_lemma

    Neyman–Pearson lemma [5] — Existence:. If a hypothesis test satisfies condition, then it is a uniformly most powerful (UMP) test in the set of level tests.. Uniqueness: If there exists a hypothesis test that satisfies condition, with >, then every UMP test in the set of level tests satisfies condition with the same .