Search results
Results from the WOW.Com Content Network
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- P {\displaystyle P} or Q {\displaystyle Q} and that either form can replace the other in ...
14, OR, Logical disjunction; 15, true, Tautology. Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.
The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol → {\displaystyle \rightarrow } is interpreted as material implication, a formula P → Q {\displaystyle P\rightarrow Q} is true unless P {\displaystyle P} is true and Q {\displaystyle Q} is false.
Intuitionistic logic has found practical use in mathematics despite the challenges presented by the inability to utilize these rules. One reason for this is that its restrictions produce proofs that have the disjunction and existence properties, making it also suitable for other forms of mathematical constructivism.
It is the negation of material implication. That is to say that for any two propositions P {\displaystyle P} and Q {\displaystyle Q} , the material nonimplication from P {\displaystyle P} to Q {\displaystyle Q} is true if and only if the negation of the material implication from P {\displaystyle P} to Q {\displaystyle Q} is true.
The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, where P and Q are called the statement's disjuncts. The rule makes it possible to eliminate a disjunction from a logical proof. It is the rule that
Related puzzles involving disjunction include free choice inferences, Hurford's Constraint, and the contribution of disjunction in alternative questions. Other apparent discrepancies between natural language and classical logic include the paradoxes of material implication , donkey anaphora and the problem of counterfactual conditionals .
Logical consequence (also entailment or logical implication) is a fundamental concept in logic which describes the relationship between statements that hold true when one statement logically follows from one or more statements.