Search results
Results from the WOW.Com Content Network
DeepFace is a deep learning facial recognition system created by a research group at Facebook.It identifies human faces in digital images. The program employs a nine-layer neural network with over 120 million connection weights and was trained on four million images uploaded by Facebook users.
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
Examples include upper torsos, pedestrians, and cars. Face detection simply answers two question, 1. are there any human faces in the collected images or video? 2. where is the face located? Face-detection algorithms focus on the detection of frontal human faces. It is analogous to image detection in which the image of a person is matched bit ...
Libraries such as TensorFlow C++, Caffe or Shogun can be used. [1] JavaScript is widely used for web applications and can notably be executed with web browsers. Libraries for AI include TensorFlow.js, Synaptic and Brain.js. [6] Julia is a language launched in 2012, which intends to combine ease of use and performance.
The technique used in creating eigenfaces and using them for recognition is also used outside of face recognition: handwriting recognition, lip reading, voice recognition, sign language/hand gestures interpretation and medical imaging analysis. Therefore, some do not use the term eigenface, but prefer to use 'eigenimage'.
OPPORTUNITY Activity Recognition Dataset Human Activity Recognition from wearable, object, and ambient sensors is a dataset devised to benchmark human activity recognition algorithms. None. 2551 Text Classification 2012 [188] [189] D. Roggen et al. Real World Activity Recognition Dataset Human Activity Recognition from wearable devices.
An example of a typical computer vision computation pipeline for face recognition using k-NN including feature extraction and dimension reduction pre-processing steps (usually implemented with OpenCV): Haar face detection; Mean-shift tracking analysis; PCA or Fisher LDA projection into feature space, followed by k-NN classification
In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...